- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Peng (1)
-
Hunt, John (1)
-
Meyers, Adam (1)
-
Rapkin, James (1)
-
del Castillo, Enrique (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Statistical inference on the location of the optima (global maxima or minima) is one of the main goals in the area of Response Surface Methodology, with many applications in engineering and science. While there exist previous methods for computing confidence regions on the location of optima, these are for linear models based on a Normal distribution assumption, and do not address specifically the difficulties associated with guaranteeing global optimality. This paper describes distribution-free methods for the computation of confidence regions on the location of the global optima of response surface models. The methods are based on bootstrapping and Tukey's data depth, and therefore their performance does not rely on distributional assumptions about the errors affecting the response. An R language implementation, the package \code{OptimaRegion}, is described. Both parametric (quadratic and cubic polynomials in up to 5 covariates) and nonparametric models (thin plate splines in 2 covariates) are supported. A coverage analysis is presented demonstrating the quality of the regions found. The package also contains an R implementation of the Gloptipoly algorithm for the global optimization of polynomial responses subject to bounds.more » « less
An official website of the United States government
